563 research outputs found

    Scarred eigenstates for quantum cat maps of minimal periods

    Full text link
    In this paper we construct a sequence of eigenfunctions of the ``quantum Arnold's cat map'' that, in the semiclassical limit, show a strong scarring phenomenon on the periodic orbits of the dynamics. More precisely, those states have a semiclassical limit measure that is the sum of 1/2 the normalized Lebesgue measure on the torus plus 1/2 the normalized Dirac measure concentrated on any a priori given periodic orbit of the dynamics. It is known (the Schnirelman theorem) that ``most'' sequences of eigenfunctions equidistribute on the torus. The sequences we construct therefore provide an example of an exception to this general rule. Our method of construction and proof exploits the existence of special values of Planck's constant for which the quantum period of the map is relatively ``short'', and a sharp control on the evolution of coherent states up to this time scale. We also provide a pointwise description of these states in phase space, which uncovers their ``hyperbolic'' structure in the vicinity of the fixed points and yields more precise localization estimates.Comment: LaTeX, 49 pages, includes 10 figures. I added section 6.6. To be published in Commun. Math. Phy

    Relaxation Time of Quantized Toral Maps

    Full text link
    We introduce the notion of the relaxation time for noisy quantum maps on the 2d-dimensional torus - a generalization of previously studied dissipation time. We show that relaxation time is sensitive to the chaotic behavior of the corresponding classical system if one simultaneously considers the semiclassical limit (\hbar -> 0) together with the limit of small noise strength (\ep -> 0). Focusing on quantized smooth Anosov maps, we exhibit a semiclassical regime 1)inwhichclassicalandquantumrelaxationtimessharethesameasymptotics:inthisregime,aquantizedAnosovmaprelaxestoequilibriumfast,astheclassicalmapdoes.Asanintermediateresult,weobtainrigorousestimatesofthequantumclassicalcorrespondencefornoisymapsonthetorus,uptotimeslogarithmicin\hbar1) in which classical and quantum relaxation times share the same asymptotics: in this regime, a quantized Anosov map relaxes to equilibrium fast, as the classical map does. As an intermediate result, we obtain rigorous estimates of the quantum-classical correspondence for noisy maps on the torus, up to times logarithmic in \hbar^{-1}.Ontheotherhand,weshowthatinthequantumregime. On the other hand, we show that in the ``quantum regime'' \ep<< << \hbar$ << 1, quantum and classical relaxation times behave very differently. In the special case of ergodic toral symplectomorphisms (generalized ``Arnold's cat'' maps), we obtain the exact asymptotics of the quantum relaxation time and precise the regime of correspondence between quantum and classical relaxations.Comment: LaTeX, 27 pages, former term dissipation time replaced by relaxation time, new introduction and reference

    On the mean density of complex eigenvalues for an ensemble of random matrices with prescribed singular values

    Full text link
    Given any fixed N×NN \times N positive semi-definite diagonal matrix G0G\ge 0 we derive the explicit formula for the density of complex eigenvalues for random matrices AA of the form A=UGA=U\sqrt{G}} where the random unitary matrices UU are distributed on the group U(N)\mathrm{U(N)} according to the Haar measure.Comment: 10 pages, 1 figur

    On the resonance eigenstates of an open quantum baker map

    Full text link
    We study the resonance eigenstates of a particular quantization of the open baker map. For any admissible value of Planck's constant, the corresponding quantum map is a subunitary matrix, and the nonzero component of its spectrum is contained inside an annulus in the complex plane, zminzzmax|z_{min}|\leq |z|\leq |z_{max}|. We consider semiclassical sequences of eigenstates, such that the moduli of their eigenvalues converge to a fixed radius rr. We prove that, if the moduli converge to r=zmaxr=|z_{max}|, then the sequence of eigenstates converges to a fixed phase space measure ρmax\rho_{max}. The same holds for sequences with eigenvalue moduli converging to zmin|z_{min}|, with a different limit measure ρmin\rho_{min}. Both these limiting measures are supported on fractal sets, which are trapped sets of the classical dynamics. For a general radius zmin<r<zmax|z_{min}|< r < |z_{max}|, we identify families of eigenstates with precise self-similar properties.Comment: 32 pages, 2 figure

    Weyl law for fat fractals

    Full text link
    It has been conjectured that for a class of piecewise linear maps the closure of the set of images of the discontinuity has the structure of a fat fractal, that is, a fractal with positive measure. An example of such maps is the sawtooth map in the elliptic regime. In this work we analyze this problem quantum mechanically in the semiclassical regime. We find that the fraction of states localized on the unstable set satisfies a modified fractal Weyl law, where the exponent is given by the exterior dimension of the fat fractal.Comment: 8 pages, 4 figures, IOP forma

    Fractal Weyl law behavior in an open, chaotic Hamiltonian system

    Get PDF
    We numerically show fractal Weyl law behavior in an open Hamiltonian system that is described by a smooth potential and which supports numerous above-barrier resonances. This behavior holds even relatively far away from the classical limit. The complex resonance wave functions are found to be localized on the fractal classical repeller.Comment: 4 pages, 3 figures. to appear in Phys Rev

    Dissipation time and decay of correlations

    Full text link
    We consider the effect of noise on the dynamics generated by volume-preserving maps on a d-dimensional torus. The quantity we use to measure the irreversibility of the dynamics is the dissipation time. We focus on the asymptotic behaviour of this time in the limit of small noise. We derive universal lower and upper bounds for the dissipation time in terms of various properties of the map and its associated propagators: spectral properties, local expansivity, and global mixing properties. We show that the dissipation is slow for a general class of non-weakly-mixing maps; on the opposite, it is fast for a large class of exponentially mixing systems which include uniformly expanding maps and Anosov diffeomorphisms.Comment: 26 Pages, LaTex. Submitted to Nonlinearit
    corecore